DOUILLES ET BOULONS

À EXPANSION RAWLBOLT

Service Technique

Tél: +44 (0) 115 984 9142 Fax: +44 (0) 115 984 4837

Information Produit

Exemples d'application:

- Carotteuses
- Antennes téléphoniques
- Garde-corps
- Machines-outils
- Machinery
- Mobilier urbain
- Balisettes
- Paraboles
- Bannes
- Cadres
- Sièges

DONNÉES PRODUIT

Le Rawlbolt® est un ancrage pour charges lourdes. Il convient parfaitement aux fixations provisoires car il est démontable.

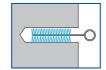
Le Rawlbolt® est une cheville auto-expansible. Sa forte capacité d'expansion lui permet une grande tolérance du diamètre de perçage. L'expansion est réalisée par l'application d'un couple de serrage sur la tête hexagonale du boulon.

Pour utilisation en:

Béton et maçonnerie

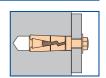
Caractéristiques

- Cheville entièrement métallique afin de garantir les performances.
- 2. Pour épaisseurs à fixer allant jusqu'à 150 mm.
- 3. Bague d'assemblage estampée du Ø du trou à forer.
- 4. Segments à large ouverture assurant la mise sous contrainte du support.
- Cône d'expansion cémenté parfaitement géométrique garantissant une expansion progressive


Douilles et boulons à expansion Rawlbolt®

DÉSIGNATION Ø VIS X ÉP. PIÈCE À FIXER	DIAMÈTRE DU BOULON	DII	DIAMÈTRE	DIAMÈTRE	DIAMÈTRE	DIAMÈTRE	DIAMÈTEE	DIAMÈTDE	DIAMÈTDE	DIAMÈTE	DIAMÈTRE	DIAMÈTRE	LONGUEUR	ÈPAISSI LA PIÉCE A F		DIAMÈTRE I		PROF. MINI	PROF.	ÉPAISSEUR	COUPLE DE SERRAGE (Nm)		CO	CODE
				TÊTE DE VIS (mm) (AF)	E DE VIS RONDELLE (mm) (mm)	DE LA DOUILLE (mm)	MAXIMUM (mm) (Tfix)	MINIMUM (mm) (Tfix)	DANS LA PIÈCE (mm) (d _f)	DANS LE BÉTON (mm) (d _O)	DE PERÇAGE	D'ANCRAGE EFFECTIVE (mm) (bef)	MINI SUPPORT (mm) (bmin)	BÉTON C20/25 (T _{inst})										
M6 10L M6 25L M6 40L	M6	55 70 85	10	12.5	45	10 25 40	0	6.5	12	50	35	70	6.5	5.0	44-015 44-020 44-025	44-010								
M8 10L M8 25L M8 40L	M8	65 80 95	13	17	50	10 25 40	0	9.0	14	55	40	80	15	7.5	44-055 44-060 44-065	44-050								
M10 10L M10 25L M10 50L M10 75L	M10	75 90 115 140	17	21	60	10 25 50 75	0	11	16	65	50	100	27	13	44-105 44-110 44-115 44-120	44-100								
M12 10L M12 25L M12 40L M12 60L	M12	90 105 120 140	19	24	75	10 25 40 60	0	13	20	85	60	120	50	23	44-155 44-160 44-165 44-170	44-150								
M16 15L M16 30L M16 60L	M16	135 150 180	24	30	115	15 30 60	0 10 30	17	25	125	95	190	120	-	44-205 44-210 44-215	44-200								
M20 60L M20 100L	M20	195 235	30	37	130	60 100	25 60	22	32	140	115	220	230	-	44-255 44-260	44-250								
M24 100L M24 150L	M24	255 300	36	50	150	100 150	25 100	26	38	160	125	240	400	-	44-305 44-310	44-300								

Mode opératoire de pose


1. Percer au diamètre et à la profondeur recommandés. N.B.: En maçonnerie, ne pas se fixer dans les ioints de scellement.

2. Nettoyer soigneusement le trou à l'aide d'un écouvillon et de la pompe soufflante.

3. Insérer la douille à expansion.

4. Positionner la pièce à fixer. Introduire le boulon au travers de la pièce à fixer. Serrer au couple recommandé.

Information Technique

DOUILLES ET BOULONS

À EXPANSION RAWLBOLT

Service Technique

e-mail: rawlinfo@bpb.com OU rawltech@bpb.com

Valeurs de charges

Boulon à expansion Rawlbolt®

Diamètre			Maçonnerie 20.5 N/mm²								
	Résis caractérist	tance ique <i>(kN)</i>	Résistance de calcul (kN)		Charge admissible (kN)		Distance au bord caractéristique (mm)		Entraxe caractéristique (mm)	Charge admissible (kN)	
	$ \begin{array}{c} \textbf{Traction} \\ (N_{Rk)} \end{array} $	Cisaillement $(V_{Rk)}$	$ \begin{array}{c} {\rm Traction} \\ {\scriptstyle (N_{Rd)}} \end{array} $	Cisaillement (V_{Rd})	$\begin{array}{c} \textbf{Traction} \\ (N_{rec}) \end{array}$	Cisaillement (V_{rec})	Traction $(C_{cr,N)}$	Cisaillement $(C_{cr;V)}$	Traction & Cisaillement $(S_{cr,N)}$ $(S_{cr,V)}$	Traction & Cisaillement (N_{rec}) (V_{rec})	
M6	9.6	8.2	4.5	4.5	3.8	3.8	80	100	120	1.8	
M8	12.1	12.8	5.6	5.6 7.1		5.9	100	120	150	2.3	
M10	16.7	20.9	7.7	11.6	6.4	9.7	120	160	180	2.9	
M12	24.6	30.5	11.4	16.9	9.5	14.1	160	180	250	4.3	
M16	57.4	55.3	26.6	30.7	22.2	25.6	190	260	290	Nous ne recommandons	
M20	79.4	88.1	36.8	48.9	30.7	40.8	250	300	330	pas l'utilisation de chevilles de diamètre supérieur à	
M24	99.0	122.8	45.8	68.2	38.2	56.8	280	350	420	M12 '	

Pour de plus amples informations sur le calcul de ces valeurs, veuillez vous reporter aux pages 10 & 11.

Coefficients de réduction – Distances au bord et entraxes pour les boulons et goujons à expansion

Les distances au bord et les entraxes caractéristiques indiqués dans le tableau cidessus constituent les valeurs minimales acceptables qui permettent d'obtenir la capacité de charge admissible d'une cheville isolée. Il conviendra d'appliquer les coefficients de réduction appropriés à la charge admissible lorsque la configuration imposera une réduction des distances au bord et/ou entraxes.

Afin de définir le coefficient de réduction applicable, choisissez le diamètre de l'ancrage dans la ligne supérieure et sélectionnez dans la colonne de gauche la distance au bord et/ou l'entraxe et effectuez l'interpolation des coordonnées. Multipliez ce coefficient à la charge admissible mentionnée dans le tableau cidessus. S'il y a plusieurs distances au bord ou entraxes pénalisants, on devra alors appliquer plusieurs coefficients à la suite.

Distance au bord (Béton)

DISTANCE AU BORD	TRACT	ION: CO	EFFICIE	NTS DE	RÉDUCI	TION AU	BORD	DISTANCE AU BORD (mm)	CISAILLEMENT: COEFFICIENTS DE RÉDUCTION AU BORD						
(mm)	M6	M8	M10	M12	M16	M20	M24		М6	M8	M10	M12	M16	M20	M24
50	0.70							60	0.50						
60	0.80	0.70						70	0.64						
70	0.90	0.80	0.70					80	0.76	0.50					
80	1.0	0.90	0.80	0.70				100	1.0	0.75	0.50				
100		1.0	0.90	0.78	0.70			120		1.0	0.69	0.50			
120			1.0	0.85	0.78	0.70		160			1.0	0.85			
140				0.93	0.85	0.76	0.70	170				0.93	0.50		
160				1.0	0.93	0.82	0.76	180				1.0	0.55		
190					1.0	0.88	0.82	220					0.76	0.50	
220						0.94	0.88	260					1.0	0.75	0.50
250						1.0	0.94	300						1.0	0.75
280							1.0	350							1.0

Entraxe (Béton)

ENTRAXE	COEFFICIENTS DE RÉDUCTION TRACTION & CISAILLEMENT												
(mm)	М6	M8	M10	M12	M16	M20	M24						
60	0.70												
80	0.80	0.70											
100	0.90	0.80	0.70										
120	1.0	0.90	0.80	0.70									
150		1.0	0.90	0.78	0.70								
180			1.0	0.85	0.78	0.70							
210				0.93	0.85	0.78	0.70						
250				1.0	0.93	0.85	0.76						
290					1.0	0.93	0.82						
330						1.0	0.88						
370							0.94						
420							1.0						

Application en maçonnerie

Si, lors d'une pose en maçonnerie, vous êtes en présence d'une charge combinée à la traction et au cisaillement, la charge résultante ne doit pas excéder la charge indiquée.